pyscf.eph package

Submodules

pyscf.eph.eph_fd module

A hacky implementation of electron-phonon matrix from finite difference

pyscf.eph.eph_fd.gen_moles(mol, disp)

From the given equilibrium molecule, generate 3N molecules with a shift on + displacement(mol_a) and - displacement(mol_s) on each Cartesian coordinates

pyscf.eph.eph_fd.get_mode(mf)
pyscf.eph.eph_fd.get_vmat(mf, mfset, disp)

computing <u|dVxc/dR|v>

pyscf.eph.eph_fd.kernel(mf, disp=1e-05, mo_rep=False)
pyscf.eph.eph_fd.run_mfs(mf, mols_a, mols_b)

perform a set of calculations on given two sets of molecules

pyscf.eph.rhf module

Analytical electron-phonon matrix for restricted hartree fock

class pyscf.eph.rhf.EPH(scf_method)

Bases: pyscf.hessian.rhf.Hessian

get_eph(mo1, omega, vec, mo_rep)
get_mode(mol=None, de=None)
kernel(mo_energy=None, mo_coeff=None, mo_occ=None, mo_rep=False)

Kernel function is the main driver of a method. Every method should define the kernel function as the entry of the calculation. Note the return value of kernel function is not strictly defined. It can be anything related to the method (such as the energy, the wave-function, the DFT mesh grids etc.).

vnuc_generator(mol)
pyscf.eph.rhf.get_eph(ephobj, mo1, omega, vec, mo_rep)
pyscf.eph.rhf.get_mode(ephobj, mol=None, de=None)
pyscf.eph.rhf.kernel(ephobj, mo_energy=None, mo_coeff=None, mo_occ=None, mo_rep=False)
pyscf.eph.rhf.rhf_deriv_generator(mf, mo_coeff, mo_occ)
pyscf.eph.rhf.solve_hmat(mol, hmat, CUTOFF_FREQUENCY=80)
pyscf.eph.rhf.vnuc_generator(ephobj, mol)

pyscf.eph.rks module

Analytical electron-phonon matrix for restricted kohm sham

class pyscf.eph.rks.EPH(scf_method)

Bases: pyscf.hessian.rks.Hessian

get_eph(mo1, omega, vec, mo_rep)
get_mode(mol=None, de=None)
kernel(mo_energy=None, mo_coeff=None, mo_occ=None, mo_rep=False)

Kernel function is the main driver of a method. Every method should define the kernel function as the entry of the calculation. Note the return value of kernel function is not strictly defined. It can be anything related to the method (such as the energy, the wave-function, the DFT mesh grids etc.).

vnuc_generator(mol)
pyscf.eph.rks.get_eph(ephobj, mo1, omega, vec, mo_rep)

pyscf.eph.uhf module

Analytical electron-phonon matrix for unrestricted hartree fock

class pyscf.eph.uhf.EPH(scf_method)

Bases: pyscf.hessian.uhf.Hessian

get_eph(mo1, omega, vec, mo_rep)
get_mode(mol=None, de=None)
kernel(mo_energy=None, mo_coeff=None, mo_occ=None, mo_rep=False)

Kernel function is the main driver of a method. Every method should define the kernel function as the entry of the calculation. Note the return value of kernel function is not strictly defined. It can be anything related to the method (such as the energy, the wave-function, the DFT mesh grids etc.).

vnuc_generator(mol)
pyscf.eph.uhf.get_eph(ephobj, mo1, omega, vec, mo_rep)
pyscf.eph.uhf.uhf_deriv_generator(mf, mo_coeff, mo_occ)

pyscf.eph.uks module

Analytical electron-phonon matrix for unrestricted kohn sham

class pyscf.eph.uks.EPH(scf_method)

Bases: pyscf.hessian.uks.Hessian

get_eph(mo1, omega, vec, mo_rep)
get_mode(mol=None, de=None)
kernel(mo_energy=None, mo_coeff=None, mo_occ=None, mo_rep=False)

Kernel function is the main driver of a method. Every method should define the kernel function as the entry of the calculation. Note the return value of kernel function is not strictly defined. It can be anything related to the method (such as the energy, the wave-function, the DFT mesh grids etc.).

vnuc_generator(mol)
pyscf.eph.uks.get_eph(ephobj, mo1, omega, vec, mo_rep)

Module contents